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A self-consistent LUC (Large Unit Cell) formalism on the basis of semi-empirical INDO 
(Intermediate Neglect of Differential Overlap) Hamiltonians has been used to study the 
electronic properties of diamond and to investigate the pressure dependence of these 
properties. The calculated properties are in good agreement with the experiments except the 
conduction band width. The increase of pressure on diamond is predicted to cause the 
following effects; an increase of the valence and conduction band widths with a decrease of 
the direct band gap, an increase of the electronic occupation probability for the p orbital with 
a decrease of this probability for the s orbital, and a decrease of the x-ray scattering factor. 
 

 
1   Introduction 

 
The band theory of solids is usually employed to consider characteristics of the 
electronic structure of a crystal which are associated with the potential periodicity and 
the corresponding electronic-state delocalization over the crystal, namely, the 
electronic energy bands, effective masses, etc. The electronic and structural properties 
of solids are a subject of considerable interest in both fundamental and applied 
physics. Even though remarkable progress has been achieved in a wide variety of 
problems, determination of the electronic and structural properties remains a 
theoretical challenge. Up to present, band structure calculations are still subject to 
immense numerical efforts. Among the methods used in this field is the self-
consistent LUC-INDO method in the linear combination of atomic orbitals (LCAO) 
approximation. This method, which had been already successfully employed for a 
long time in molecular theory, has gained wide acceptance in calculations of the 
electronic structure of crystals. The LUC-INDO method compares well in accuracy 
with other approaches while being at the same time, the best starting approximation to 
take into account electronic correlations [1]. This method has been used in the present 
work to study the electronic properties of diamond and to investigate the effect of 
pressure on these properties. 
 The electronic structure, lattice constant, bulk modulus, and other physical 
properties of diamond have been extensively studied and are well-known [2-11]. 
Recently, Occelli et al. [12] have measured experimentally very accurate values of the 
lattice constant, bulk modulus, and pressure derivative of the bulk modulus. The 
present work aims to theoretically determine the energy bands, orbital hybridization, 
bulk modulus, x-ray scattering factors, valence charge distribution, and then to 
investigate the effect of pressure on these properties using the self-consistent LUC 
formalism on the basis of semi-empirical INDO Hamiltonians.  
__________________ 
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2   Theoretical and computational details 

 
Quantum mechanics offers the only possible way for the solution of many problems 
in physics and chemistry. A quantum-chemical semi-empirical INDO method 
developed especially for crystals [13] is used in the present work. This quantum 
computational formalism has been used with great success especially exploiting the 
so-called LUC (Large Unit Cell) model [14]. Within the method each molecular 
orbital is constructed as a linear combination of atomic orbitals [13] in order to 
express the wave function of the system. Each energy value is calculated by the HF 
self-consistent field method and the total energy of the system is obtained. The basic 
idea of LUC is in computing the electronic structure of the unit cell extended in a 
special manner at k=0 in the reduced Brillouin zone. This equivalent to a band 
structure calculation at those k points; which transform to the Brillouin zone center on 
extending the unit cell [14]. 
 Using the LCAO, the crystal wave function in the LUC-INDO formalism is 
written in the following form:  
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where αpC  are the orbital expansion coefficients and Ru is the lattice translation 

vector. The atomic orbitals used for the LCAO procedure form the basis set of the 
calculation. Slater-type orbitals (STO) [13] are used in the present work. These 
orbitals have the radial form  
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where ζ  is the orbital exponent. The expectation value of the electronic energy is 
given by 
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The total Hamiltonian for a microcrystal consisting of Ñ  electrons may be written as 
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where ZA is the core charge, RAB is the distance between the atom A and the atom B, 
and the summation is over all nuclei. Applying the condition for a stationary 
state )0( =δε , the Roothan-Hall equations can be obtained [15]: 
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pqF  represents the Fock matrix elements and pqS  is the overlap integral for atomic 

functions pΦ  and qΦ , and written as 
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The Fock matrix elements may be expressed as the sum of one and two-electron 
components: 



 3

∑ ∑∑
λν

λνλννλ−







 φφφφ−φφφφ+φ−∇−φ=
cells
all

,

u
qsr

o
psr

u
q

o
p

functions
basis all

rs
rs

u
q

a

1
a1a

2
1

o
puq,op )|(

2

1
)|(P)1(rZ

2

1
)1(F          (7)                                                                

νλ
rsP  is a density matrix element with the form: 
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Substituting k=0 in Eq. (5) yields 
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At this stage there are no approximations in the Fock matrix. However, in the 
INDO approximation one can utilize the fact that many of the integrals are very small 
or zero and begin to neglect systematically some of the matrix elements and many 
approximations can be made. The Fock matrix elements in their final forms in the 
LUC-INDO formalism are taken from Refs. [16, 17] and used in the present work in 
the following form: 
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for p and q on different atomic centers and   
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for p and q on the same atomic center. Where o
ABβ  is the bonding parameter and ABγ   

is the average electrostatic repulsion between any electron on atom A and any 
electron on atom B and can be written as, 
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µµU  is the local core matrix element and given by  
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where I µ  and Aµ  are the ionization potential and electron affinity respectively.                                                                                                    

f(x) is the modulating function and given by [17]                                                                         
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where x for the 8 atom LUC is given by 



 4

                            
a

R
x

o
AB
νπ=                                                                                          (16) 

νo
ABR  is the distance between the atom A at the central lattice o and the atom B at the v 

lattice. The modulating function is multiplied by the density matrix and two electron 
integral when a summation on the LUCs is made to avoid divergence when including 
large number of neighbors.  

The Roothan-Hall equation are solved by first assuming an initial set of the 
linear expansion coefficient ( αpC ), generating the density matrix )P( rs

νλ , and 

computing the overlap integral and the first guess of the Fock matrix elements )F( pq . 

Then one can calculate the electronic energy)( iε , and a new matrix of αpC  

coefficients can be obtained. This procedure is continued until there is no significant 
variation between the calculated value of αpC  and ε  of the successive iterations. The 

INDO parameters are optimized by minimizing the deviation between available 
experimental data and the theoretical results of the final calculations. 

 The computational procedure and programming of the present work takes the 
following steps [18]: 
1. The positions of atoms and the kind of states associated with every atom are given 

as input data. 
2. The overlap, core Hamiltonian, and two-electron integrals are calculated from the 

initial   basis set .   
3. The Fock Hamiltonian is calculated from the initial guess of the wave function, 

using Slater-type orbitals [13], together with the calculated integrals of step 2. 
4. The new eigenvalues are used to calculate the density matrix. 
5. The density matrix is used to calculate the total energy. 
6. The new eigenvalues are used to calculate a new Fock Hamiltonian. 
7. Steps 4 and 5 are repeated and the new electronic energy is compared with the 

previous one. 
8. If the new electronic energy differs from the preceding one by more than a given 

tolerance (5x10-3eV), steps 6, 4, and 5 are repeated. Otherwise, step 9 is executed. 
9. Final Hartree-Fock wave functions are used to calculate the correlation corrections 

[15,19]. Then the correlated wave functions are obtained.  
10. The correlated wave functions are used to obtain the band structure and other 

physical properties of diamond. 
The effect of pressure on the aforementioned properties is investigated by using 

appropriate input data and executing the above steps. 
The initial guess of the wave function is important since the optimum guess 

reduces the number of iterations performed to obtain the converged electronic energy. 
A large number of iterations will result in an accumulation of computational errors. 
The sp3 initial guess of the wave function is given as an expected linear combination 
of the atomic states of one cell. We have used a LUC of eight atoms which is the 
conventional Bravais lattice of diamond having a volume of a3, where a is the lattice 
constant of the Bravais lattice of diamond. Interactions of the atoms in the central 
Bravais lattice with the surrounding atoms up to the fourth neighbors are included. 
There are 32 k points within this LUC. The special symmetry points in the Brillouin 
zone, which are effectively taken into account in the band structure calculations, are 
Γ25, Γ1, Γ15, and X4C. It should be pointed out that the increase of the LUC size will 
result in an increase of the results accuracy [5], but this complicates the calculations 
and needs very long time in comparison with the time needed for 8-atom LUC 
calculations.  
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3   Results and discussion  
 

3.1   Optimum parameter set 
 
The empirical parameters included in the LUC-INDO method are the orbital exponent 
ζ , the bonding parameter oβ , ½ (Is + As), and ½ (Ip + Ap). The optimum values of 
these empirical parameters used for diamond in the present work are listed in Table 1 
in comparison with the corresponding values of Harker and Larkins [5].     
 

Table 1   Parameter sets of diamond used in the present work and by Harker 
and Larkins [5]. 

 
Parameter                        Ref. [5] value                   Present work value 

         ζ (a.u.-1)                          1.765                                 1.82 

         oβ (eV)                           -10.2                                 -10.24 
          -1/2 (Is+As) (eV)             7.0                                    6.221 
          -1/2 (Ip+Ap) (eV)            5.5                                    4.352 

 
 The value of the orbital exponent ζ determines the charge distribution of 
electrons around the nucleus. This parameter is varied till the total energy reaches its 
minimum value. Comparing the ζ  value for diamond with that given by Clementi 
and Roetti [20] for atoms and Hehre et al. [15] for molecules, shows that the ζ  value 
for solids and molecules is larger than that for atoms. This indicates the contracted 
charge distribution in solids and molecules and the diffuse charge distribution in 
atoms. The value of bonding parameter oβ  of diamond is seen to be very much less 
than that for molecules [21]. This can be explained by noting that the number of 
bonds in solids is usually higher, then the interaction energy is distributed over these 
bonds. The value of ½(Is + As) of diamond is less than the corresponding value of the 
free atom [22]. This shows that the s orbitals of solids are less connected to their 
atoms than in the free atom. The same observation is true for the value of ½(Ip + Ap) 
for diamond, but it is not the case for other solids [18]. 
 

3.2   Electronic and structural properties      
 
Using the computational procedure described in section (2), electronic and structural 
properties of diamond are determined at 0 K and zero pressure by pure INDO 
calculations and by INDO calculations with the inclusion of correlation contribution 
as shown in Table 2 in comparison with other computational and experimental results. 
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Table 2   Electronic and structural properties of diamond at 0 K and zero 
pressure determined by the present work ((I) pure INDO and (II) INDO with 
correlation correction) in comparison with other computational and 
experimental results. 

 
Property                                       Computational value                      Exp. 
                                         Ref.[5]        Others          Present work                                 

(I)          (II)                                 
Lattice constant                6.73            6.73 [11]      6.73     6.73       6.74 [23] 
(a.u.)                                                                                                  6.743 [12] 
Cohesive energy              -7.68           -10.16 [24]   -7.35   -7.36      -7.37 [25] 
(eV / atom) 
Valence band width         22.40           24.07 [10]    22.20   22.19     21.0 [26] 
 (eV)                                                                                                                       24.2 [10] 
Conduction band width    4.70                  -              2.67     2.63       8 [27] 
 (eV) 
Direct band gap                9.40            7.42 [10]       7.89     7.94       7.3 [10] 
(eV)  
Hybridization state           s0.6 p3.4               -            s0.954 p3.046            - 

   
 It is interesting to note that there is no significant difference between the 
values extracted from the pure INDO calculations and the corresponding values 
obtained from the INDO calculations with the inclusion of correlation contribution. 
This is because that the adopted semi-empirical procedure in some way already 
includes correlation effects where the INDO calculations are generally fitted to 
experimental data. The equilibrium lattice constant (ao) is determined by plotting the 
total energy as a function of lattice parameter, as shown in Fig.1. The calculated value 
of the equilibrium lattice constant is in very good agreement with the experimental 
value [23]. 
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The cohesive energy is calculated from the total energy of the LUC. Since the 
large unit cell in our calculations is composed of 8 atoms, the cohesive energy can be 
determined from the following expression: 

 
)17(.8/ ofree

T
coh EEEE −−=−

  
where Efree is the free atom sp shell energy. The cohesive energy is corrected for the 
zero-point motion of the nuclei [28]. This correction is due to the fact that unlike the 
classical harmonic oscillator, the vibrational ground state is not equal to zero but 

Fig.1   Total energy of diamond 
as a function of lattice parameter 
in the present work. 
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equals to Eo. This is a pure quantum mechanical effect and is directly related to the 
uncertainty principle. The cohesive energy value of the present work has better 
agreement with the experimental value [25] than the Harker and Larkins [5] value. 
This is because of the including of the exchange integrals, correlation correction, and 
zero-point energy in our analysis. The correlation correction is the correction included 
to take into account the fact that the motions of electrons are correlated pairwise to 
keep electrons apart. This correction is calculated to be 0.012 eV. The zero-point 
energy is the vibrational ground state energy which is equal to 0.18 eV [28] for 
diamond. The calculated valence band width is in good agreement with the 
experimental values [26, 10]. The calculated conduction band width differs markedly 
from the experimental value [27]. This can be attributed to that not all the excited 
states are considered, so deep and more precise analysis should be done in this 
respect. The direct band gap extracted from the present work agrees well with the 
experimental value [10]. The small difference is due to the neglect of the core states 
and to the approximations incorporated with the computational formalism. The 
hybridization states determined by this work show an increase of the s state 
occupation in comparison with the result of Harker and Larkins [5], and there is a 
tendency to reach the sp3 state of diamond. The eigenvalues of the high symmetry 
points used to determine the band structure are shown in Table 3. 
 
 
 
 
 

Table 3   Energy bands of diamond at Γ  and X high symmetry points with 
respect to 25Γ point, compared with other results. 

 
Symmetry point                         Eigenvalue (eV) 
                                 Ref [5]           Present work               Exp. 

1Γ                              -20.60            -22.20                          -24.20 [10] 

X IV                           -9.60              -10.01                          -13.00 [29] 

X4V                           -5.40              -5.33                            -5.00 [29] 

25Γ                             0.00                0.00                                  - 

15Γ                             11.80              7.89                             7.30 [10] 

2Γ                              15.40              8.48                            15.30 [30] 

X1C                            15.20             8.87                             6.00 [29] 
X4C                            14.40             10.56                                 - 

 
 Many physical properties of a solid can be obtained using the wave functions 
obtained in the preceding section, such as the bulk modulus, x-ray scattering factor, 
and electronic charge density. The bulk modulus (B) is defined as [31]: 
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where Vo is the equilibrium lattice volume. The bulk modulus can be obtained 
numerically by calculating the lattice energy at three different volumes; Vo, Vo+∆ V, 
and Vo- ∆ V, and applying the second derivative formula: 
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The calculated bulk modulus of diamond is 5.20x1011 N/m2, which is in good 
agreement with the experimental values of 5.45x1011 N/m2 [32], 4.43x1011 N/m2 [23], 
and 4.46 x 1011  N/m2 [12]. 

 
The x-ray scattering factor (fj) is defined by [32]  

 

∫ −= )20().exp()( dVriGrf ej ρ  

where )(reρ denotes the atomic charge density expressed as  

 
)21()()(∑∑ ΨΨ=

µ
µµρ rrP vv

v
e  

and G is the reciprocal lattice vector. Table 4 shows the calculated x-ray scattering 
factors for diamond at 0 K and zero pressure, in comparison with experiments [33] 
and HF calculations [34]. 
 
 
 
 
 
 

Table 4   X-ray scattering factors of diamond (atomic units) compared with 
other results. 

 

hkl 
X-ray scattering factor value 

HF [34] Present work Experimental [33] 

111 3.249 3.49 3.321 

220 1.960 2.15 1.972 

311 1.693 1.86 1.663 

400 1.543 1.62 1.480 

331 1.526 1.54 1.539 

422 1.427 1.43 1.443 

511 1.381 1.38 1.418 

333 1.376 1.37 1.418 

 
 The valence electrons charge density is also investigated in the present work. 
Fig.2 displays this charge density for the (001), (400), and (200) planes. 
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3.3   Effect of pressure on diamond properties 
 
The pressure dependence of the electronic structure and other properties can be 
determined from the present theory and computational procedure. The pressure 
dependence of the lattice parameter of diamond is determined using the Murnaghan 
[35] equation of state:  
 

)22()1( 3

1

0
0

−−−
+= B

B

p
Baa

 
 
where a is the lattice parameter at pressure p, a0  is the lattice constant at zero pressure 

which has a computed value of 6.73 a.u and an experimental value of 6.74 a.u [23] 
and 6.743 a.u [12], B0  is the bulk modulus at zero pressure which was computed to be 

520 GPa and was determined experimentally to be 443 GPa [23] and 446 GPa [12], 
and Bˉ represents the pressure derivative of the bulk modulus and has an experimental 
value of 4.07 [36] and 3.0 [12]. The computed value of a0  is in good agreement with 

the experimental values, whereas the agreement is fair concerning the B0  value. The 

Bˉ value was not computed in the present analysis. So the experimental values of B0  

(443 GPa) and B̄ (4.07) are adopted to plot the pressure dependence of the lattice 
parameter as depicted in Fig.3. This figure agrees very well with that published by 
Xie et al.[9]. It is interesting to mention that using the accurate value of B0  (446 GPa) 

and B̄ (3.0) reported by Occelli et al. [12] yields a very small difference (less than 
0.1%) in the calculated values of the lattice parameter from the corresponding values 
shown in Fig.3.      
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 The pressure dependence of the direct band gap is illustrated in Fig.4. A 
similar behavior has been recently observed by Scandolo et al. [37]. The pressure 
dependence of the band gap of diamond has been widely investigated. For instance, 
Fahy and Louie [38] and Van Camp et al. [39] have computed the pressure derivative 
of the fundamental band gap to be 0.006 and 0.0062 eV/GPa respectively. Whereas, 
the present work is concerned with the direct band gap and its pressure derivative is 
computed to be -0.002 eV/GPa in the pressure range (0-20) GPa. It is shown from the 

Fig.2   Valence electrons charge 
density (105−  atomic unit) at 0 K 
and zero pressure for (a) (001) 
plane, (b) (400) plane, and (c) (200) 
plane. 

(a) 

(b) 

(c) 
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present analysis that the increase of pressure causes a decrease of the absolute value 
of the cohesive energy. This means that the C-C bond decreases with the increase of 
pressure. The predicted effect of pressure on valence band width and conduction band 
width is displayed in Fig.5 and Fig.6 respectively. 
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 The effect of pressure on the hybridization state of the s orbital is shown in 
Fig. 7. As obvious from this figure, the increase of pressure causes an increase of the 
probability of electrons transition from s orbital to p orbital. This is in agreement with 
the observation of Takemura and Syassen [40]. 
 
 

Fig.3   Lattice parameter versus 
pressure for diamond. 

Fig.4   Pressure dependence of the 
direct band gap of diamond. 

Fig.5   Calculated valence band 
width of diamond as a function of 
pressure. 
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 It is noted that the increase of pressure causes, in general, a decrease of the x-
ray scattering factor as shown in Fig.8 for (331), (422), and (511) planes. This can be 
interpreted as follows; increasing the pressure decreases the inter planer distance 
(dhkl), and this increases the Bragg scattering angle (Bragg’s law), and this in turn 
causes a decrease of the scattering wave intensity. 
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The effect of pressure (40 GPa) on the valence charge distribution is depicted 
in Fig.9. Comparing this figure with Fig.2, one can note that pressure causes an 
increase of the charge density around the nuclei and a decrease of this density at the 
intermediate distance between the nuclei. The pressure causes an orbitals overlap. A 
measure of the percentage orbitals overlap ratio can be written as (d/rnn%), where rnn 

represents the distance between two neighboring nuclei and it equals 43  a for 
diamond structure, and d represents the distance between two charge density peaks 
and it can be written as  
 

)23(2 maxrrd nn −=
 
where rmax is the radial distance at which the charge density peak appears and given 
by  
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Fig.6   Calculated conduction 
band width of diamond as a 
function of pressure. 

Fig.7   Predicted effect of 
pressure on the hybridization 
state of s orbital in diamond. 
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Table 5 shows the effect of pressure on a, rnn, d, and the percentage orbitals overlap 
ratio. 
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(b) 

(c) 

Fig.8   X-ray scattering factor 
against pressure for (a) (331) 
plane, (b) (422) plane, and (c) 
(511) plane of diamond. 

(a) 
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Table 5   Predicted effect of pressure on the lattice parameter (a), nearest 
neighbor distance (rnn), charge density peak to peak distance (d), and the 
percentage orbitals overlap ratio (d/rnn%). 

 

d/rnn % d  (a.u) rnn (a.u) a  (a.u) P (GPa) 

62.29 1.82 2.91 6.730 0 
62.15 1.80 2.90 6.705 5 
62.02 1.79 2.89 6.682 10 
61.89 1.78 2.88 6.659 15 
61.77 1.78 2.87 6.638 20 
61.65 1.77 2.87 6.617 25 
61.53 1.76 2.86 6.597 30 
61.42 1.75 2.85 6.578 35 
61.30 1.74 2.84 6.559 40 
61.20 1.73 2.83 6.541 45 
61.10 1.73 2.82 6.524 50 
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Fig. 9   Predicted effect of a 40 GPa 
pressure on the valence charge 
density (105−  atomic unit) of (a) 
(001) plane, (b) (400) plane, and (c) 
(200) plane. 
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4   Conclusions  
 
The success of the LUC-INDO approach depends on the optimum choice of the 
empirical parameter set. Adding the zero-point and correlation corrections has 
enhanced the calculated properties. In view of our results, the model can be used to 
simulate solids in a practical manner, because it is reasonably economical to use. 
Increasing the LUC size is expected to improve the results accuracy and reliability, as 
it was also confirmed by Harker and Larkins [5]. The calculated values of the 
diamond properties are in good agreement with the experimental results except the 
conduction band width. The increasing of pressure on diamond is predicted to cause 
the following effects; an increase of the valence and conduction band widths, a 
decrease of the direct band gap, an increase of the electronic occupation probability 
for the p orbital with a decrease of this probability for the s orbital, and a decrease of 
the x-ray scattering factors. 
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