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A self-consistent LUC (Large Unit Cell) formalisrm dhe basis of semi-empirical INDO
(Intermediate Neglect of Differential Overlap) Héamians has been used to study the
electronic properties of diamond and to investighte pressure dependence of these
properties. The calculated properties are in gagdeanent with the experiments except the
conduction band width. The increase of pressurediamond is predicted to cause the
following effects; an increase of the valence aodduction band widths with a decrease of
the direct band gap, an increase of the electracgapation probability for the p orbital with
a decrease of this probability for the s orbital] @ decrease of the x-ray scattering factor.

1 Introduction

The band theory of solids is usually employed tmsuder characteristics of the
electronic structure of a crystal which are asdediavith the potential periodicity and
the corresponding electronic-state delocalizatiorerothe crystal, namely, the
electronic energy bands, effective masses, etceldatronic and structural properties
of solids are a subject of considerable interesbath fundamental and applied
physics. Even though remarkable progress has bemevad in a wide variety of
problems, determination of the electronic and s$tmat properties remains a
theoretical challenge. Up to present, band strectaiculations are still subject to
immense numerical efforts. Among the methods usedhis field is the self-
consistent LUC-INDO method in the linear combinataf atomic orbitals (LCAO)
approximation. This method, which had been alresulycessfully employed for a
long time in molecular theory, has gained wide ptaxece in calculations of the
electronic structure of crystals. The LUC-INDO nwthcompares well in accuracy
with other approaches while being at the same tiheebest starting approximation to
take into account electronic correlations [1]. Timsthod has been used in the present
work to study the electronic properties of diamartl to investigate the effect of
pressure on these properties.

The electronic structure, lattice constant, bul&dolus, and other physical
properties of diamond have been extensively studied are well-known [2-11].
Recently, Occelli et al. [12] have measured expenitally very accurate values of the
lattice constant, bulk modulus, and pressure devivaof the bulk modulus. The
present work aims to theoretically determine thergy bands, orbital hybridization,
bulk modulus, x-ray scattering factors, valencergbadistribution, and then to
investigate the effect of pressure on these priggettsing the self-consistent LUC
formalism on the basis of semi-empirical INDO Haomians.
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2 Theoretical and computational details

Quantum mechanics offers the only possible wayttiersolution of many problems
in physics and chemistry. A quantum-chemical sempieical INDO method
developed especially for crystals [13] is used he present work. This quantum
computational formalism has been used with greetess especially exploiting the
so-called LUC (Large Unit Cell) model [14]. Withitnhe method each molecular
orbital is constructed as a linear combination twimac orbitals [13] in order to
express the wave function of the system. Each gnalye is calculated by the HF
self-consistent field method and the total enerigthe system is obtained. The basic
idea of LUC is in computing the electronic struetwf the unit cell extended in a
special manner at k=0 in the reduced Brillouin zomhkis equivalent to a band
structure calculation at those k points; which $farm to the Brillouin zone center on
extending the unit cell [14].

Using the LCAO, the crystal wave function in the@-INDO formalism is
written in the following form:

W, (k1) = %’Stfsexp(ikfeu ), ()9, (r—R,) (1)

where C,, are the orbital expansion coefficients ang iR the lattice translation

vector. The atomic orbitals used for the LCAO prhge form the basis set of the
calculation. Slater-type orbitals (STO) [13] areedisin the present work. These
orbitals have the radial form

(ZZ) n+1/2

R,(r)= (Zn!)llz

r" exp(=2r) (@)

where  is the orbital exponent. The expectation valughef electronic energy is
given by

e=(W|[HIW)(W|W) (3)

The total Hamiltonian for a microcrystal consistiofg\ electrons may be written as

N 1 Na ~ 1 N N IR L ~
H :Z(‘Emi _;ZArAi)+EZ;rué +;;ZAZBRA}3 (4)

where 2 is the core charge, AR is the distance between the atom A and the atom B,
and the summation is over all nuclei. Applying tbendition for a stationary
statg(d¢ = 0) , the Roothan-Hall equations can be obtained [15]:

2 (Fg ()= (KIS, (K))Cp (K) =0 (5)

P

F,, represents the Fock matrix elements &)d is the overlap integral for atomic

functions CDp and @, and written as
Spa(K) =" (@,(r=R,) |9, (r—R,))exp(kR,) (6)

The Fock matrix elements may be expressed as timeafuone and two-electron
components:



all  albasis
cellsfunctions

- V. O U \2 1 O .V u
-oi- ZZrlcpq(1)> 3 ZP,s((cppcpqlcp,cpz)—z(cppcpr |<p2<pq)] (7)
VA rs

op ug <(pp

P” is a density matrix element with the form:

0ocC

Pe' =2) > C, (K)Cq (K)explk'.(R, -R,) (8)

Substituting k=0 in Eq. (5) yields
Y (F0-0, 08, (0)C,, (0) =0 )

At this stage there are no approximations in thekFRoatrix. However, in the
INDO approximation one can utilize the fact thatnypaf the integrals are very small
or zero and begin to neglect systematically soméefmatrix elements and many
approximations can be made. The Fock matrix elesnentheir final forms in the
LUC-INDO formalism are taken from Refs. [16, 17]damsed in the present work in
the following form:

Fpp (O) =U opop zz ZBVS\\IJB + ZBS\ (Sop,vp - 6ov) + zz I:)rr (O)ygl\B/

BZzA v

(10)
TR O () v - TP O /)
Fro(©) = 3B Supis = 5P O (v (11)

for p and g on different atomic centers and
0 1 1 0 0 0
qu (0) = ZBASopvq _E qu (O)Zf (X)Vgx +§ qu (O)[B((pp(pg /(p;(pq) - ((pg(p; /(pq(pg)] (12)
v£0 vZ£0

for p and g on the same atomic center. Wige is the bonding parameter ang;
is the average electrostatic repulsion between eegtron on atom A and any
electron on atom B and can be written as,

s =[]0, o, (1) — 0, (2)0, (2drdr, (13)
U, is the local core matrix element and given by
1 1
Upp:_§(|p+Ap)_(ZA _E)VAA (14)

wherel , and A, are the ionization potential and electron affinigspectively.
f(x) is the modulating function and given by [17]

F(x) = (sin (x)jz 1s)

X

where x for the 8 atom LUC is given by
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R2 is the distance between the atom A at the celafitadle o and the atom B at the

lattice. The modulating function is multiplied byet density matrix and two electron
integral when a summation on the LUCs is made tidaglivergence when including
large number of neighbors.

The Roothan-Hall equation are solved by first asegnan initial set of the
linear expansion coefficient (., ), generating the density matrixP?), and

computing the overlap integral and the first guefsthe Fock matrix elementé,, .)
Then one can calculate the electronic engggy and a new matrix ofC,

coefficients can be obtained. This procedure iginaad until there is no significant
variation between the calculated value(?;g,g and € of the successive iterations. The

INDO parameters are optimized by minimizing the idgon between available
experimental data and the theoretical results efitial calculations.

The computational procedure and programming ofptiesent work takes the
following steps [18]:
1. The positions of atoms and the kind of statss@ated with every atom are given
as input data.
2. The overlap, core Hamiltonian, and two-electimtegrals are calculated from the
initial basis set .
. The Fock Hamiltonian is calculated from theialiguess of the wave function,
using Slater-type orbitals [13], together with ttadculated integrals of step 2.
. The new eigenvalues are used to calculate thatgenatrix.
. The density matrix is used to calculate thel enargy.
. The new eigenvalues are used to calculate aHoew Hamiltonian.
. Steps 4 and 5 are repeated and the new electemgrgy is compared with the
previous one.
. If the new electronic energy differs from theegading one by more than a given
tolerance (5x18eV), steps 6, 4, and 5 are repeated. Otherwige 9steexecuted.
9. Final Hartree-Fock wave functions are used toutate the correlation corrections
[15,19]. Then the correlated wave functions areioied.
10. The correlated wave functions are used to ohta band structure and other
physical properties of diamond.
The effect of pressure on the aforementioned ptigseis investigated by using
appropriate input data and executing the abovesstep
The initial guess of the wave function is importamce the optimum guess
reduces the number of iterations performed to altae converged electronic energy.
A large number of iterations will result in an acauation of computational errors.
The sp initial guess of the wave function is given aseapected linear combination
of the atomic states of one cell. We have used & I0f eight atoms which is the
conventional Bravais lattice of diamond having 4uwe of &, where a is the lattice
constant of the Bravais lattice of diamond. Inteaas of the atoms in the central
Bravais lattice with the surrounding atoms up te faurth neighbors are included.
There are 32 k points within this LUC. The spesyinmetry points in the Brillouin
zone, which are effectively taken into accounthie band structure calculations, are
s, M1, M15, and Xc. It should be pointed out that the increase oftb€ size will
result in an increase of the results accuracyllfi,this complicates the calculations
and needs very long time in comparison with theetineeded for 8-atom LUC
calculations.
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3 Resultsand discussion
3.1 Optimum parameter set

The empirical parameters included in the LUC-IND@thod are the orbital exponent
¢, the bonding parametgf®, Y2 (k + Ay, and ¥z (§ + Ap). The optimum values of

these empirical parameters used for diamond irptesent work are listed in Table 1
in comparison with the corresponding values of ldadnd Larkins [5].

Tablel Parameter sets of diamond used in the present aratkby Harker
and Larkins [5].

Parameter Ref. [5] value Present work value
¢ (aud) 1.765 1.82

B°(eV) -10.2 -10.24

-1/2 (+A.) (eV) 7.0 6.221

-1/2 (1+A,) (eV) 5.5 4.352

The value of the orbital exponetdetermines the charge distribution of

electrons around the nucleus. This parameter iedaitl the total energy reaches its
minimum value. Comparing thé value for diamond with that given by Clementi
and Roetti [20] for atoms and Hehre et al. [15]favlecules, shows that th¢ value
for solids and molecules is larger than that fan®. This indicates the contracted
charge distribution in solids and molecules and difeuse charge distribution in
atoms. The value of bonding paramef&r of diamond is seen to be very much less
than that for molecules [21]. This can be explaitgdnoting that the number of
bonds in solids is usually higher, then the inteoacenergy is distributed over these
bonds. The value of “2(¥ Ag) of diamond is less than the corresponding vafube
free atom [22]. This shows that the s orbitals alids are less connected to their
atoms than in the free atom. The same observatitmueé for the value of Y4(k Ap)
for diamond, but it is not the case for other so[it8].

3.2 Electronic and structural properties

Using the computational procedure described ini@e¢R), electronic and structural
properties of diamond are determined at 0 K ana z@essure by pure INDO
calculations and by INDO calculations with the usibn of correlation contribution
as shown in Table 2 in comparison with other comamal and experimental results.



Table 2 Electronic and structural properties of diamond & and zero
pressure determined by the present work ((I) pNE2O and (1) INDO with
correlation correction) in comparison with other mputational and
experimental results.

Property Cartggional value Exp.

Ref.[5] Others Present work

0) (1

Lattice constant 6.73 P[¥1] 6.73 6.73 6.74 [23]
(a.u.) 6.743 [12]
Cohesive energy -7.68 -102 -7.35 -7.36  -7.37 [25]
(eV / atom)
Valence band width 22.40 24.001[122.20 22.19 21.0[26]
(eV) 24.2 [10]
Conduction band width  4.70 - 2.67 2.63 8 [27]
(eV)
Direct band gap 9.40 71182 789 7.94 7.3 [10]
(eV)

Hybridization state 0§ p* - °s> p*

It is interesting to note that there is no sigfit difference between the
values extracted from the pure INDO calculationsl d@ne corresponding values
obtained from the INDO calculations with the inatus of correlation contribution.
This is because that the adopted semi-empiricatgohare in some way already
includes correlation effects where the INDO caltales are generally fitted to
experimental data. The equilibrium lattice const@t is determined by plotting the
total energy as a function of lattice parameteshasvn in Fig.1. The calculated value
of the equilibrium lattice constant is in very goagreement with the experimental
value [23].

Lattice parameter (a.u)
6.65 6.7 6.75 6.8 6.85
-1242.64 T T T
124271 Fig.l1 Total energy of diamond
as a function of lattice parameter
in the present work.

-1242.78 4
-1242.85 4
-1242.92 4

Total energy (eV)

-1242.99

The cohesive energy is calculated from the totargy of the LUC. Since the
large unit cell in our calculations is composedatoms, the cohesive energy can be
determined from the following expression:

-E,, =E'"/8-E,, —E,. a7

where E is the free atom sp shell energy. The cohesiveggrie corrected for the
zero-point motion of the nuclei [28]. This corrextiis due to the fact that unlike the
classical harmonic oscillator, the vibrational grdustate is not equal to zero but



equals to E This is a pure quantum mechanical effect andrictly related to the
uncertainty principle. The cohesive energy valuetltd present work has better
agreement with the experimental value [25] than Haeker and Larkins [5] value.
This is because of the including of the exchangegmals, correlation correction, and
zero-point energy in our analysis. The correlatiorrection is the correction included
to take into account the fact that the motionsletteons are correlated pairwise to
keep electrons apart. This correction is calculdtedbe 0.012 eV. The zero-point
energy is the vibrational ground state energy whglequal to 0.18 eV [28] for
diamond. The calculated valence band width is irodgagreement with the
experimental values [26, 10]. The calculated cotidndand width differs markedly
from the experimental value [27]. This can be httted to that not all the excited
states are considered, so deep and more preci$gsianshould be done in this
respect. The direct band gap extracted from theeptework agrees well with the
experimental value [10]. The small difference i® da the neglect of the core states
and to the approximations incorporated with the potational formalism. The
hybridization states determined by this work show iacrease of the s state
occupation in comparison with the result of Harked Larkins [5], and there is a
tendency to reach the %ptate of diamond. The eigenvalues of the high sgtnm
points used to determine the band structure anershoTable 3.

Table 3 Energy bands of diamond &t and X high symmetry points with
respect td, point, compared with other results.

Symmetry point Eigenvalue (eV)

Ref [5] Present work Exp.
r -20.60 2Q. -24.20 [10]
Xiv -9.60 -1D0.0 -13.00 [29]
Xav -5.40 -5.33 -5.00 [29]
MM 0.00 ©.0 -
M 11.80 7.89 7.30 [10]
r, 15.40 8.4 15.30 [30]
Xic 15.20 8.87 6.00 [29]
Xac 14.40 10.56 -

Many physical properties of a solid can be obthinsing the wave functions
obtained in the preceding section, such as the ma#ulus, x-ray scattering factor,
and electronic charge density. The bulk modulusgBlefined as [31]:

B=v[d2ETj a9

dv?

where \4 is the equilibrium lattice volume. The bulk moduloan be obtained
numerically by calculating the lattice energy aethdifferent volumes; )/ V,+AV,
and \,-AV, and applying the second derivative formula:



dv 2 Vo (AV)? )

The calculated bulk modulus of diamond is 5.20%18/m? which is in good
agreement with the experimental values of 5.45%Nom? [32], 4.43x10" N/m? [23],

and 4.46 x 18 N/m?[12].

(dzETj ~limit ET(V, +AV)+ET(V, —~AV) - 2E"(V.)
EYA

The x-ray scattering factorfs defined by [32]

f, = j p.(r)expEiG.r)dV (20)
where p, ( )denotes the atomic charge density expressed as

Pe=2.2, PuW,(NW, () (29

and G is the reciprocal lattice vector. Table 4vahthe calculated x-ray scattering
factors for diamond at O K and zero pressure, mgarison with experiments [33]
and HF calculations [34].

Table4 X-ray scattering factors of diamond (atomic undejnpared with
other results.

hi X-ray scattering factor value

HF [34] Present work Experimental [33]
111 3.249 3.49 3.321
220 1.960 2.15 1.972
311 1.693 1.86 1.663
400 1.543 1.62 1.480
331 1.526 1.54 1.539
422 1.427 1.43 1.443
511 1.381 1.38 1.418
333 1.376 1.37 1.418

The valence electrons charge density is also tigaed in the present work.
Fig.2 displays this charge density for the (004DQ), and (200) planes.



3.3 Effect of pressure on diamond properties

The pressure dependence of the electronic stru@nce other properties can be
determined from the present theory and computdtipmacedure. The pressure
dependence of the lattice parameter of diamonaeisrohined using the Murnaghan
[35] equation of state:

1

a=a, 1+ I:%—p)_£ @2
BO

where a is the lattice parameter at pressurg [5 the lattice constant at zero pressure
which has a computed value of 6.73 a.u and an ewpetal value of 6.74 a.u [23]
and 6.743 a.u [12], Bis the bulk modulus at zero pressure which waspeed to be
520 GPa and was determined experimentally to beGEa8 [23] and 446 GPa [12],
andB™ represents the pressure derivative of the bulkulusdand has an experimental
value of 4.07 [36] and 3.0 [12]. The computed vadfi@, is in good agreement with

the experimental values, whereas the agreemeatrisdncerning the Bvalue. The
B~ value was not computed in the present analysish&experimental values of,B

(443 GPa) and B(4.07) are adopted to plot the pressure dependentee lattice
parameter as depicted in Fig.3. This figure agressg well with that published by
Xie et al.[9]. It is interesting to mention thatng the accurate value of [B446 GPa)
and B (3.0) reported by Occelli et al. [12] yields a wemall difference (less than
0.1%) in the calculated values of the lattice pat@mfrom the corresponding values
shown in Fig.3.
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00400-600
B200-400
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00600-800
00400-600

;(2)?;(;300 Fig.2 Valence electrons charge

density (10° atomic unit) at 0 K
and zero pressure for (a) (001)
plane, (b) (400) plane, and (c) (200)
plane.

The pressure dependence of the direct band gdjussrated in Fig.4. A
similar behavior has been recently observed by &danet al. [37]. The pressure
dependence of the band gap of diamond has beemyviestigated. For instance,
Fahy and Louie [38] and Van Camp et al. [39] hameputed the pressure derivative
of the fundamental band gap to be 0.006 and 0.@8&Pa respectively. Whereas,
the present work is concerned with the direct bgal and its pressure derivative is
computed to be -0.002 eV/GPa in the pressure rgdig@8) GPa. It is shown from the
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present analysis that the increase of pressureesauslecrease of the absolute value
of the cohesive energy. This means that the C-Gl bieecreases with the increase of
pressure. The predicted effect of pressure on galband width and conduction band

width is displayed in Fig.5 and Fig.6 respectively.

6.79

L attice parameter (a.u)

6.51

Direct band gap (eV)

Valence band width (eV)

6.72

6.65

6.58

0 20 40 60

Pressure (GPa)

7.96

7.94
7.92

7.9
7.88

7.86

20 40 60

Pressure (GPa)

o

25.2

24.5
23.8
23.1
22.4

21.7 ¥

Pressure (GPa)

Fig.3 Lattice parameter versus
pressure for diamond.

Fig.4 Pressure dependence of the
direct band gap of diamond.

Fig.5 Calculated valence band
width of diamond as a function of
pressure.

The effect of pressure on the hybridization std#t¢he s orbital is shown in
Fig. 7. As obvious from this figure, the increaseressure causes an increase of the
probability of electrons transition from s orbitalp orbital. This is in agreement with
the observation of Takemura and Syassen [40].
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£ 29

S L . Fig.6  Calculated conduction
2_ band width of diamond as a
23 28 function of pressure.
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It is noted that the increase of pressure causegneral, a decrease of the x-
ray scattering factor as shown in Fig.8 for (33422), and (511) planes. This can be
interpreted as follows; increasing the pressureedses the inter planer distance
(dnk), and this increases the Bragg scattering angtag@®s law), and this in turn
causes a decrease of the scattering wave intensity.

0.96
0.95
0.94
0.93
0.92
0.91

0.9 . .
0 20 40 60

Pressure (GPa)

Fig.7 Predicted effect of
pressure on the hybridization
state of s orbital in diamond.

Hybridization of s orbital

The effect of pressure (40 GPa) on the valencegehdistribution is depicted
in Fig.9. Comparing this figure with Fig.2, one caote that pressure causes an
increase of the charge density around the nucldiaadecrease of this density at the
intermediate distance between the nuclei. The pressauses an orbitals overlap. A
measure of the percentage orbitals overlap ratiobeawritten as (d{s20), where §,
represents the distance between two neighborindeinand it equals\/§/4 a for
diamond structure, and d represents the distantweebe two charge density peaks

and it can be written as

m "2 Toax 23

wherer is the radial distance at which the charge demmgk appears and given
by

n-1
Fax = (24)
{
Hence, d is now written as
d:ﬁa—z(n_l) (25)

4 ¢
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Table 5 shows the effect of pressure on,g,d, and the percentage orbitals overlap

ratio

X-ray scattering factor of (331)

X-ray scattering factor of

X-ray scattering factor of (511)

plane

(422) plane

plane

1.54

1.533
1.526
1.519 A
1.512 A

1.505

1.498

0 20 40 60

Pressure (GPa)

1.435

1.428

1.421 A1

1.414

1.407 1

1.4

0 20 40 60

Pressure (GPa)

1.386

1.379

1.372 1

1.365

1.358

1.351

0 20 40 60
Pressure (GPa)

Fig.8 X-ray scattering factor
against pressure for (a) (331)
plane, (b) (422) plane, and (c)
(511) nlane of diamor.
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Table 5 Predicted effect of pressure on the lattice param@t), nearest
neighbor distancerq,), charge density peak to peak distance (d), ard th
percentage orbitals overlap ratio (g).

P (GPa) a (a.u) Mn(a.u) d (a.u) d/rn%
0 6.730 291 1.82 62.29
5 6.705 2.90 1.80 62.15
10 6.682 2.89 1.79 62.02
15 6.659 2.88 1.78 61.89
20 6.638 2.87 1.78 61.77
25 6.617 2.87 1.77 61.65
30 6.597 2.86 1.76 61.53
35 6.578 2.85 1.75 61.42
40 6.559 2.84 1.74 61.30
45 6.541 2.83 1.73 61.20

50 6.524 2.82 1.73 61.10
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Fig. 9 Predicted effect of a 40 GPa
pressure on the valence charge
density (10° atomic unit) of (a)
(001) plane, (b) (400) plane, and (c)
(200) plane.
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4 Conclusions

The success of the LUC-INDO approach depends onofitenum choice of the
empirical parameter set. Adding the zero-point amdrelation corrections has
enhanced the calculated properties. In view ofresults, the model can be used to
simulate solids in a practical manner, because iteasonably economical to use.
Increasing the LUC size is expected to improveréseilts accuracy and reliability, as
it was also confirmed by Harker and Larkins [5].eThalculated values of the
diamond properties are in good agreement with #per@mental results except the
conduction band width. The increasing of pressureliamond is predicted to cause
the following effects; an increase of the valencel @onduction band widths, a
decrease of the direct band gap, an increase cdl#otronic occupation probability
for the p orbital with a decrease of this prob#pifor the s orbital, and a decrease of
the x-ray scattering factors.
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